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ABSTRACT 
This paper presents the equilibrium analysis of a planar tensegrity 
mechanism.  The device consists of a base and top platform that 
are connected by one connector leg (whose length can be 
controlled via a prismatic joint) and two spring elements whose 
linear spring constants and free lengths are known.  The paper 
presents two cases, one where the spring free lengths are both 
zero, and the other where the spring free lengths are nonzero.  The 
purpose of the paper is to show the enormous increase in 
complexity that results from nonzero free lengths. 
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1. INTRODUCTION 
The word tensegrity is a combination of the words tension and 
integrity (Edmondson, 1987 and Fuller, 1975).  Tensegrity 
structures are spatial structures formed by a combination of rigid 
elements in compression (struts) and connecting elements that are 
in tension (ties).  No pair of struts touch and the end of each strut 
is connected to three non-coplanar ties (Yin et al, 2002).  The 
entire configuration stands by itself and maintains its form solely 
because of the internal arrangement of the struts and ties (Tobie, 
1976). 

The development of tensegrity structures is relatively new and the 
works related have only existed for approximately twenty five 
years.  Kenner, 1976, established the relation between the rotation 
of the top and bottom ties.  Tobie, 1976, presented procedures for 
the generation of tensile structures by physical and graphical 
means.  Yin, 2002, obtained Kenner’s results using energy 
considerations and found the equilibrium position for unloaded 
tensegrity prisms.  Stern, 1999, developed generic design 
equations to find the lengths of the struts and elastic ties needed to 
create a desired geometry for a symmetric case.  Knight, 2000, 
addressed the problem of stability of tensegrity structures for the 
design of deployable antennae. 

2. PROBLEM STATEMENT 
The mechanism to be analyzed here is shown in Figure 1.  The 
top platform (indicated by points 4, 5, and 6) is connected to the 
base platform (indicated by points 1, 2, and 3) by two spring 
elements whose lengths are L1 and L2 and by a variable length 
connector whose length is referred to as L3.  Although this does 
not match the exact definition of tensegrity, the device is 

prestressed in the same manner as a tensegrity mechanism.  The 
exact problem statement is as follows: 
given: 

• L12  distance between points 1 and 2 

• p3x, p3y coordinates of point 3 in coord. system 1 

• L45 distance between points 4 and 5 

• p6x, p6y coordinates of point 6 in coord. system 2 

• L3 distance between points 1 and 4 

• k1, L01 spring constant and free length of spring 1 

• k2, L02 spring constant and free length of spring 2 
find: 

• all static equilibrium configurations 

It is apparent that since the length L3 is given, the device has two 
degrees of freedom.  Thus there are two descriptive parameters 
that must be selected in order to define the system.  For this 
analysis, the descriptive parameters are chosen as the angles γ1 
and γ2 which are shown in Figure 1.  Other parameters were 
investigated, but none yielded a less complicated solution than is 
presented here. 

3. SOLUTION APPROACH 
Two possible solution approaches were considered, i.e. (1) satisfy 
force and moment conditions for equilibrium and (2) obtain 
configurations of minimum potential energy.  Each approach was 

Figure 1.  Compliant Mechanism 
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found to realize the same set of constraint equations.  As such, 
obtaining the condition for force and moment balance is presented 
here. 
The first step of the analysis is to determine the coordinates of the 
six points in terms of the base coordinate system as expressed in 
terms of the descriptive parameters γ1 and γ2.  The coordinates of 
the three points in the base may be written as 
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The coordinates of the three points in the top platform may be 
written as 
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where si and ci, i=1,2, represent the sine and cosine of the angle γi. 
A free body diagram of the top platform indicates that the sum of 
the forces along the three connector lines must equal zero at 
equilibrium.  The unitized Plücker coordinates of a connector line 
can be obtained as 
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where (xt, yt) and (xb, yb) are respectively the coordinates of the 
points on the top and bottom platforms that are on the line and di 
is the distance between the points that is calculated as 

 ( ) ( )2 2
i t b t bd x x y y .= − + −  (4) 

Thus the unitized Plücker coordinates of the three connector lines 
may be written as 
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where 
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The force in each of the springs can be written as 
 f1 = k1 (d1 – L01) (10) 
 f2 = k2 (d2 – L02) . (11) 

The summation of the three forces that are acting on the top 
platform may be written as 

 f1$1 + f2$2 + f3$3 = 0 . (12) 
It is interesting to note that this equation implies that a necessary 
condition for static equilibrium is that the three line coordinates 
are linearly dependent. 
The three line coordinates may now be expressed as 
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where the terms li, mi, and ni have been defined in (5), (6), and 
(7). 
Equation (12) may be rearranged as 
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In order for a solution to exist, it is necessary that the three scalar 
equations represented by (14) be satisfied.  Since n3 = 0, it may be 
written that 
 f1l1 + f2l2 = 0 . (15) 
Eliminating the unknown f3, from the two scalar equations 
obtained from the first two rows of (14) gives 
 l3 (f1m1 + f2m2) – m3 (f1m1+f2m2) = 0 . (16) 
Equations (15) and (16) represent the conditions that must be 
satisfied for the mechanism to be in static equilibrium.  All the 
terms in these equations have been defined in terms of the 
descriptive parameters γ1 and γ2. 

4. ZERO FREE LENGTH CASE 
4.1 Analysis 
For this simplified case it is assumed that the free lengths of the 
two springs, i.e. L01 and L02, are both equal to zero.  The forces in 
the two springs as defined in (10) and (11) now reduce to 

 f1 = k1 d1 (17) 
 f2 = k2 d2 . (18) 
Substituting these expressions as well as the line coordinate terms 
defined in (5) and (6) into (15) and (16) give 

 L3 (k1L12+k2p3x) s1 + [k1L12L45 + k2(p3xp6x+p3yp6y)] s2 
 – k2L3p3y c1 + k2 (p3xp6y-p3yp6x) c2 = 0 (19) 
 (k1L45+k2p6x) (c1s2-s1c2) + k2p6y (c1c2+s1s2) 
 + (k2p3x+k1L12) s1 – k2p3y c1 = 0 . (20) 
Note that when the free lengths of the springs are zero that the 
terms d1 and d2 vanish. 

The solution for the values of the angles γ1 and γ2 that 
simultaneously satisfy (19) and (20) proceeds by defining their 
tan-half angles as 

 i
ix tan

2
γ

=  (21) 
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and then introducing the trigonometric identities 

 
2

i i
i i2 2

i i

2x 1 xs , c .
1 x 1 x

−
= =

+ +
 (22) 

Substituting (22) into (19) and (20) and rearranging yields 

 (A1x2
2+A2x2+A3)x1

2 + (A4x2
2+A5x2+A6)x1 

 + (A7x2
2+A8x2+A9) = 0 , (23) 

 (B1x2
2+B2x2+B3)x1

2 + (B4x2
2+B5x2+B6)x1 

 + (B7x2
2+B8x2+B9) = 0  (24) 

where the coefficients A1 through B9 are expressed in terms of 
given quantities as 
 A1 = k2(p6xp3y – p6yp3x + L3p3y) , 
 A2 = 2k1L12L45 + 2k2(p3xp6x + p3yp6y) , 
 A3 = k2(p6yp3x – p6xp3y + L3p3y) , 
 A4 = 2(k1L12L3 + k2L3p3x) , 
 A5 = 0 ,   
 A6 = A4 , 
 A7 = k2(p6xp3y – p6yp3x – L3p3y) , 
 A8 = A2 , 
 A9 = k2(-p6xp3y + p6yp3x – L3p3y) , (25) 
 B1 = k2(p6y +p3y) , 
 B2 = -2(k2p6x – 2k1L45) , 
 B3 = k2(p3y – p6y) , 
 B4 = 2k1(L45 + L12) + 2k2(p3x + p6x) , 
 B5 = 4k2p6y , 
 B6 = 2k1(L12 – L45) + 2k2(p3x – p6x) , 
 B7 = k2(-p3y – p6y) , 
 B8 = 2k1L45 + 2k2p6x , 
 B9 = k2(p6y – p3y) .  (26) 
Crane and Duffy (1998) present two methods for solving a pair of 
equations of the form of (23) and (24).  Using Bezout’s method, 
the two equations may be written as 
 P1 x1

2 + Q1 x1 + R1 = 0 , (27) 
 P2 x1

2 + Q2 x1 + R2 = 0 (28) 
where 
 P1 = A1x1

2+A2x2+A3 , (29) 
 Q1 = A4x2

2+A5x2+A6 , (30) 
 R1 = A7x2

2+A8x2+A9 . (31) 
 P2 = B1x2

2+B2x2+B3 , (32) 
 Q2 = B4x2

2+B5x2+B6 , (33) 
 R2 = B7x2

2+B8x2+B9 . (34) 
The condition that the quadratics (27) and (28) have a common 
root for x1 is that 
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Since the terms P1 through R2 are quadratic with respect to x2, 
expansion of (35) yields an eighth degree polynomial in the 
variable x2.  The coefficients of this polynomial have been 
obtained symbolically, but are not listed here due to their length.  

It was found that this eighth degree polynomial could be divided 
symbolically by the term (1+x2

2) with no remainder resulting in a 
sixth order polynomial in the variable x2. 

Values for x1 that correspond to each of the eight solutions for x2 
can be determined from 
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2 2
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Unique corresponding values for γ1 and γ2 were calculated for 
each value of x1 and x2 from (21) as 
 γi = 2 arctan(xi), i=1,2 . (37) 

4.2 Numerical Example 
The following values were selected for a numerical example: 

• L12 = 9.220 m, 

• p3x = -3.254 m, p3y = 3.796 m,  

• L45 = 1.367 m,  

• p6x = -0.305 m, p6y = -0.882 m 

• L3 = 6 m 

• k1 = 2 N/m, L01 = 0,  

• k2 = 3.5 N/m, L02 = 0 . 
The coefficients listed in (25) and (26) were evaluated 
numerically and the coefficients of the sixth order polynomial in 
the variable x2 were obtained by expanding (35) and dividing 
throughout by (1+x2

2).  The six solutions for γ 2 and the 
corresponding solutions for γ1 are listed in Table 1. 

Table 1. Six Solutions for Zero Free Length Case 

Solution # γ1, radians γ2, radians 

1 -2.2905 -2.6125 

2 -1.8510 0.3100 

3 1.0441 2.2880 

4 1.1136 -0.8197 

5 -1.7543 
+ 0.0641 i 

1.1886 
– 0.7453 

6 –1.7543 
– 0.0641 i 

1.1886 
+ 0.7453 

 
The four real solutions are shown in Figure 2.  The two complex 
solutions were shown to satisfy equations (19) and (20). 

5. NONZERO FREE LENGTH CASE 
5.1 Analysis 
The problem statement and solution approach here is the same as 
presented in Sections 2 and 3.  Now, however, the free lengths of 
the springs, i.e. L01 and L02, are nonzero.  Substituting (10) and 
(11) as well as the line coordinate terms defined in (5) and (6) into 
(15) and (16) and rearranging now gives 

 A1d1d2 + A2 d1 + A3 d2 = 0 , (38) 
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 B1d1d2 + B2d1 + B3d2 = 0 (39)  
where the terms d1 and d2 are functions of the angles γ1 and γ2 as 
defined in (8) and (9) and A1 through B3 are also functions of the 
angles γ1 and γ2 and are defined as 
 A1 = L3(k1L12+k2p3x)s1 – k2p3yL3c1 
  + (k1L12L45+k2p3xp6x+k2p3yp6y)s2 + k2(p3xp6y-p3yp6x)c2 , 
 A2 = -k2L02p3xL3s1 + k2L02p3yL3c1 
  – k2L02(p3xp6x+p3yp6y)s2 + k2L02(p3yp6x-p3xp6y)c2 , 
 A3 = -k1L12L01(L3s1+L45s2) , (40) 
 B1 = k2p6y(c1c2+s1s2) – (k1L45+k2p6x)(s1c2-c1s2) 
  + (k1L12+k2p3x)s1 – k2p3yc1 , 
 B2 = -k2L02p6y(c1c2+s1s2) + k2L02p6x(s1c2-c1s2) 
  -k2L02p3xs1 + k2L02p3yc1, 
 B3 = k1L01L45(s1c2-c1s2) – k1L01L12s1 . (41) 
The difficulty in obtaining solutions to equations (38) and (39) is 
that the terms d1 and d2 (which were not present in the previous 
zero spring free length case) contain the square root of terms 
containing the sines and cosines of γ1 and γ2.  To address this 
problem, (38) and (39) are rearranged as 
 A2d1 = -(A1d1 + A3) d2 , (42) 
 B2d1 = -(B1d1 + B3) d2 . (43) 
Squaring these equations yields 
 A2

2d1
2 – d2

2 (A1
2
 d1

2 + 2A1A3d1 + A3
2) = 0 , (44) 

 B2
2d1

2 – d2
2 (B1

2
 d1

2 + 2B1B3d1 + B3
2) = 0 . (45) 

These two equations can now be rearranged as 
 A2

2d1
2 – d2

2 (A1
2
 d1

2 + A3
2) = 2 A1A3d1d2

2 , (46) 
 B2

2d1
2 – d2

2 (B1
2
 d1

2 + B3
2) = 2 B1B3d1d2

2 , (47) 
Squaring (46) and (47) yields 

 {A2
2d1

2 – d2
2 (A1

2
 d1

2 + A3
2)}2 – {2 A1A3d1d2

2}2 = 0 , (48) 
 {B2

2d1
2 – d2

2 (B1
2
 d1

2 + B3
2)}2 – {2 B1B3d1d2

2}2 = 0 . (49) 
All the d1 and d2 terms in (48) and (49) have been raised to an 
even power.  This allows for the substitution of (8) and (9) into 
(48) and (49) without the existence of any square root term. 
Since the terms A1 through B3 and d1

2 and d2
2 are first order in the 

sines and cosines of γ1 and γ2, expansion of (48) and (49) will 
yield two equations that are of degree 8 in the sines and cosines of 
γ1 and γ2.  Substitution of the tan-half angle expressions defined in 
(22) will result in two equations that are 16th degree in the 
parameters x1 and x2.  Utilizing Sylvester’s Dialytic method, that 
is described in Crane and Duffy (1998), to eliminate the 
parameter x1 would yield a single polynomial in x2 of degree 512.  
This is a significant increase in complexity compared to the 
degree 6 polynomial that resulted from the zero free length case. 

5.2 Solution via the Continuation Method 
The continuation method (Garcia and Li, 1980, Morgan, 1983, 
1986, 1987, Wampler et al., 1990) is a numerical technique to 
solve a set of equations in multiple variables.  This is as opposed 
to Sylvester’s method which would lead to a symbolic solution of 
the problem. 
A concise description of the continuity method is presented by 
Tsai, 1999.  Suppose one wishes to solve the set of equations F(x) 
which are defined by 
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F(x) is called the target system. 
The continuation method begins by first estimating the total 
number of possible solution sets (sets of values for x1 and x2 for 
this case) that satisfy the given equations.  For example, Bezout’s 
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theorem states that a polynomial of total degree n has at most n 
isolated solutions in the complex Euclidean space.  Including 
solutions at infinity, the Bezout number of a polynomial system is 
equal to the total degree of the system. 

Next, an initial system, G(x) =0, is obtained, whose solution will 
be of the same degree as that of F(x), but whose solution set is 
known in closed form.  In other words, G(x) maintains the same 
polynomial structure as F(x). 

Finally, a homotopy function H(x, t) is prepared such as 

 H(x, t) = γ (1-t) G(x) + t F(x) (51) 
where γ is a random complex constant.  When t=0, the homotopy 
function equals the initial system, G(x).  When t=1, the homotopy 
function equals the target system, F(x).  Recall that the solutions 
to G(x) are known.  As the parameter t is increased in small steps 
from 0 to 1, the solutions of H(x, t) can be tracked (referred to as 
path tracking) and when t =1, these solutions will be the solutions 
to the original target system.  If the degree of the solution set was 
overestimated, some of the solutions will track to infinity and 
these can easily be discarded. 

5.3 Numerical Example 
The following values were selected for a numerical example: 

• L12 = 9.220 m, p3x = -3.254 m, p3y = 3.796 m,  

• L45 = 1.367 m, p6x = -0.305 m, p6y = -0.882 m 

• L3 = 6 m 

• k1 = 2 N/m, L01 = 11.5 m,  

• k2 = 3.5 N/m, L02 = 9.5393 m . 
Numerical coefficients were obtained based on this input data set 
for the equations (48) and (49).  The continuation method was run 
on this set of two equations in two unknowns to obtain all solution 
sets for the two variables, x1 and x2, for the particular numerical 
example.  The software PHC pack (Verschelde (1999)) was used 
to implement the continuation method. 
The software estimated that there would be 512 total solution sets.  
A total of 462 solutions were found to converge.  The entire set of 
solutions is not presented here due to the large number.  Of these 
solutions, 12 were real.  These solutions are being evaluated to 
determine if they do represent equilibrium solutions for the 
mechanism.  The complex solutions are being checked to verify 
that they satisfy equations (48) and (49). 

6. CONCLUSIONS 
This paper has presented an approach to determine all equilibrium 
configurations of a planar mechanism comprised of two bodies 
connected by a variable length connector leg and two spring 
elements.  The approach is simple, i.e. define the problem by two 
descriptive parameters and then obtain the equations that 
represent the conditions for static equilibrium.  Here a simple 
force and moment balance approach was used.  As shown in the 
paper, the solution is trivial when the free lengths of the two 
springs are zero.  However, the complexity of the problem makes 
the solution virtually unmanageable when non zero free lengths 
are considered. 
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