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ABSTRACT
In this article, the authors investigate the fault tolerance of manip-
ulators in their nominal configuration. In this work, fault tolerance
is measured in terms of the worst case relative manipulability
index. While this approach is applicable to both serial and parallel
mechanisms, it is especially applicable to parallel mechanisms with
a limited workspace. It is first shown that the relative manipulability
indices are characterized by the null space of the manipulator
Jacobian. This motivates the problem of determining the class of
manipulator Jacobians with a prescribed null space. This approach
can be used to find optimally fault-tolerant manipulators. It is
then shown through dimensional arguments that there are limits
to the amount of redundancy for this problem to be solvable. The
authors use these limits to prove that a previously derived inequality
for the worst case relative manipulability index is generally not
achieved for fully spatial manipulators and that the concept of
optimal fault tolerance to multiple failures is more subtle than
previously indicated. After presenting an example of a seven degree-
of-freedom mechanism that is optimally fault-tolerant to single
failure, the authors consider the problem of finding a manipulator
Jacobian that is optimally fault tolerant to multiple failures. It is
shown that optimal solutions cannot be equally fault tolerant.
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1. INTRODUCTION

Fault tolerant design of serial or parallel manipulators is critical
for tasks requiring robots to operate in remote and hazardous
environments where repair and maintenance tasks are extremely
difficult [1]-[5]. In such cases, operational reliability is of prime
importance. By adding kinematic redundancy to the robotic system,
the robot may still be able to perform its task even if one or
more joint actuators fail [6]. However, simply adding kinematic
redundancy to the system does not guarantee fault tolerance [7].
One must strategically plan how the kinematic redundancy should
be added to the system to ensure that fault tolerance is optimized
[8].

One approach to the problem of designing fault tolerant robots
is to optimize some measure of fault tolerance. There are a variety
of kinematic measures proposed [9]-[13]. One particular measure
is the manipulability index [14]:

w(J) =
p

det(JJT ). (1)

where J is the manipulator Jacobian of the robot. The manipula-
bility index is a nonnegative quantity that takes on the value zero
precisely at the singular configurations of the robot. Configurations
that result in a relatively large manipulability index are usually
considered to be good operating configurations.

Zhang, Duffy, and Crane defined the quality index to quantify
the performance of a spatial redundant in-parallel manipulator [15]-
[17]:

λ =

s
det(JJT )

det(JmJT
m)

(2)

where J is the six-by-eight manipulator Jacobian at the current
configuration and Jm is the manipulator Jacobian at the central
symmetrical configuration. The quality index is a dimensionless
ratio which takes a maximum value of 1 at a central symmetrical
configuration that is shown to correspond to the maximum value of
the square root of the determinant of the product of the manipulator
Jacobian with its transpose. An important property of the quality
index is that it avoids some of the dimensional inconsistencies
associated with the manipulability index.

In this article we focus on the relative manipulability index,
which was first introduced in [7] to quantify the fault tolerance
of kinematically redundant serial manipulators. Let J be an m×n
Jacobian where m < n and suppose that there are f ≤ n−m joints
that are locked. The relative manipulability index corresponding to
locked joint failures in joints i1, . . . , if is defined to be

ρi1,··· ,if =
w(i1···if J)

w(J)
(3)

where J denotes the manipulator Jacobian, i1···if J denotes the
manipulator Jacobian after the columns i1, . . . , if corresponding
to the failed joints are removed, and where w(J) =

p
det(JJT )

is the manipulability index for J [14]. For a revolute serial
manipulator or a parallel mechanism, the relative manipulability
index, like the quality index, avoids the dimensional inconsistencies
inherent in the manipulability index. The relative manipulability
index is a local measure of the amount of dexterity that is retained
when a manipulator suffers one or more locked joint failures. The
value of a relative manipulability index ranges from zero to one.
A zero value would indicate a loss of full end-effector motion
at that configuration after the failed joints are locked. In other
words, a zero relative manipulability index means that the reduced
manipulator Jacobian i1···if J does not have full rank. A relative
manipulability index of one would indicate that no dexterity is
lost at that configuration. In this case the joints in question do
not contribute to end-effector motion at the operating configuration
prior to their failure, i.e., those joints only produce self-motion [7].
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Fig. 1. A General Gough-Stewart Platform (GSP)

Relative manipulability indices have also been used to study
the fault tolerance of redundant Gough-Stewart platforms [18]. A
Gough-Stewart platform (GSP) is a parallel mechanism consisting
of a base, a moving platform, and struts as shown in Fig 1. For a
GSP, the inverse Jacobian M maps the generalized velocity of the
payload to the corresponding joint velocities of the individual struts.
The matrix M has the same form as the transpose of a manipulator
Jacobian J . In other words, the first three components of each row
forms a unit vector that is orthogonal to the vector given by the
last three components of that row. If MT M is a diagonal matrix,
then one says that the mechanism is an orthogonal Gough-Stewart
platform (OGSP) [19], [20]. OGSPs are a special class of GSPs
that are particularly well-suited to various precision applications
owing to the local kinematic and dynamic decoupling of the
Cartesian directions they provide [21]. In [18], a class of OGSPs
was identified that possess optimal fault tolerant manipulability for
single joint failures based on maximizing the minimum relative
manipulability index about an operating point.

In this article, the authors investigate the fault tolerance of
manipulators at their nominal operating configuration when there
are single or multiple locked joint failures. In the next section,
the relationship between the relative manipulability indices and the
null space of the manipulator Jacobian is established using the
principal minors of the null space projection operator. Based on this
formulation of fault tolerance, it is easy to establish identities and
inequalities for the relative manipulability indices. Motivated by the
observation that the relative manipulability indices are completely
determined by the null space of the manipulator Jacobian, we then
discuss some of the theoretical limitations of designing manipulator
Jacobians with a prescribed null space. An optimally fault tolerant
seven degree-of-freedom (DOF) manipulator is then determined
in Section 3. In Section 4, the authors consider the concept of
equally fault tolerant configurations, i.e., configurations for which
any combination of a specified number of joint failures results in
the same local manipulability. It is shown through a series of results
that such configurations are truly rare. Conclusions and future work
appear in Section 5.

2. FAULT TOLERANCE AND THE NULL SPACE OF
THE MANIPULATOR JACOBIAN
It turns out that the amount of fault tolerance that a manipulator
possesses is closely related to the null space of the manipulator
Jacobian. This important fact motivates the problem of designing
operating configurations for robotic mechanisms based on choosing
the manipulator Jacobian to have a prescribed null space. After
characterizing the relative manipulability indices in terms of the
null space of the manipulator Jacobian, we will discuss the amount
of freedom that a designer has in choosing the null space of a
nominal manipulator Jacobian.

2.1 Relative Manipulability Indices and the Null Space of the
Manipulator Jacobian
We begin by demonstrating that the subdeterminants of the null
space projection operator of the manipulator Jacobian completely
characterize the relative manipulability indices. Our analysis is
applicable to serial and parallel mechanisms so throughout this
work we will use M and JT interchangeably. Let J be a full rank
m × n matrix with m < n and let r = n − m. For a manipulator,
m denotes the dimension of the workspace, n denotes the number
of joints, and r denotes the degree of redundancy. We will call an
n× r matrix N a null space matrix of J if the columns of N form
an orthonormal basis for the null space of J . Although the null
space matrix N is not unique for a given J , any two null space
matrices N and N ′ of J are related by an orthogonal matrix Q in
the following way: N ′ = NQ. We will see later that we can use
Q to place N into a canonical form that can help us to properly
view the null space and its relationship to fault tolerance.

In [7], it was shown that the relative manipulability index is
related to the null space matrix by the relationship

ρi1,··· ,if = w(Ni1···if ) =
q

|Ni1···if NT
i1···if

| (4)

where Ni1···if is the f × r matrix consisting of rows i1, . . . , if
of the matrix N . We thus have the interesting observation that the
relative manipulability indices are strictly a function of the null
space of J . We will build on this result to address the issue of
designing manipulators that are optimally fault tolerant to one or
more joint failures.

The relative manipulability index squared, ρ2
i1,··· ,if

=

|Ni1···if NT
i1···if

|, is perhaps best viewed as a principal minor of the
null space projection operator PN = I−J+J where J+ denotes the
pseudoinverse of J . The n×n matrix PN represents the orthogonal
projection of the joint space onto the null space of J . Unlike a
null space matrix, PN is unique for a given J ; however, given a
corresponding null space matrix N , we have that PN = NNT . It
then follows from (4) that the relative manipulability index squared
is equal to the determinant of the matrix consisting of the i1, . . . , if
rows and columns of PN .

Recall that an k × k minor of an n × n matrix A = [aij ] with
k < n is a subdeterminant of the form

A

„
i1 · · · ik
j1 · · · jk

«
�

˛̨̨
˛̨̨
˛̨̨
ai1j1 ai1j2 · · · ai1jk

ai2j1 ai2j2 · · · ai2jk

...
...

. . .
...

aikj1 aikj2 · · · aikjk

˛̨̨
˛̨̨
˛̨̨ (5)

where 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n. If
(j1, . . . , jk) = (i1, . . . , ik), then this quantity is called a principal
minor of A. Hence, we have that ρ2

i1,··· ,if
is the (i1, . . . , if )

principal minor of PN = NNT :

ρ2
i1,··· ,if

= PN

„
i1 · · · if
i1 · · · if

«
. (6)

It is well known that the coefficients of the characteristic poly-
nomial pA(λ) = |λI − A| of A are given in terms of the sums
of the principal minors of A. To be more specific, for pA(λ) =
λn + an−1λ

n−1 + · · · + a0, we have that

an−k = (−1)k
X

1≤i1<···<ik≤n

A

„
i1 · · · ik
i1 · · · ik

«
. (7)

Since PN is a projection, it is idempotent, i.e., P 2
N = PN , so

its only possible distinct eigenvalues are 0 and 1. Furthermore,

2007 Florida Conference on Recent Advances in Robotics, FCRAR 2007

2

Tampa, Florida, May 31 - June 1, 2007



because rank(PN ) = r < n where r = n − m, it follows that
the characteristic polynomial of PN is

p(λ) = λm(λ − 1)r =

rX
k=0

 
r

k

!
(−1)kλn−k. (8)

Equations (6), (7), and (8) then imply that

X
1≤i1<···<if≤n

ρ2
i1,··· ,if

=

 
r

f

!
. (9)

This result, written as a slightly different but equivalent expression,
was also proven in [18]; however, the proof provided there was
based on repeated application of the Binet-Cauchy theorem and
was less direct than applying principal minors. It is important to
note, however, that the approach just given is not merely a different
proof of the result in [18]. More importantly, it provides us with
an approach that will be used in Section 4 to address multiple joint
failures.

As noted in [18], equation (9) can be used to obtain an upper
bound for the worst case relative manipulability index by noting
that the minimum value of any set of numbers must be less than
or equal to the average so that

min
1≤i1<···<if≤n

ρi1,··· ,if ≤
vuut`

r
f

´
`

n
f

´ . (10)

This inequality provides us with some insight into the question of
how fault tolerant a manipulator can be.

2.2 Designing Nominal Fully Spatial Manipulator Jacobians
with a Prescribed Null Space
Based on the inequality in (10), Ukidve, et al., [18] convincingly
argue the importance of designing for fault tolerance. This is
especially true when there may be multiple faults. One approach
to ensuring local fault tolerance is to design the manipulator based
on null space properties. This is particularly applicable when the
required workspace is very small as is the case in [18]. However,
there are limitations to how much redundancy can be used when
designing nominal manipulator Jacobians with a prescribed null
space.

These limitations follow from the fact that the manipulator
Jacobian for a fully spatial manipulator must satisfy certain con-
straints on its columns. In particular, the vector given by the first
three components of a column must have unit length and must
be orthogonal to the vector given by the last three components
of that column. For a manipulator with n joints, this results in
2n constraints. If the manipulator Jacobian is required to have a
prescribed null space matrix, then each of its six rows must be
orthogonal to the r rows of NT where r = n − 6 is the number
of degrees of redundancy of the manipulator. Consequently, the
manipulator Jacobian must satisfy 6r null space constraints. Since
the manipulator Jacobian has 6n parameters, it follows that one has
6n−2n−6r = 4(6+r)−6r = 24−2r degrees of freedom to satisfy
the design constraints. Hence, one cannot expect to arbitrarily find
a manipulator with r > 12 degrees of redundancy that has a
configuration where the manipulator Jacobian has a prescribed null
space matrix.

If the mechanism is required to be an orthogonal Gough-Stewart
platform (OGSP), then there is a further reduction in the degrees
of freedom that one has in choosing a manipulator Jacobian with a
prescribed null space. If JJT is required to be a diagonal matrix,
there would be 15 additional constraints, decreasing the degrees

TABLE I
PARAMETERS FOR THE OPTIMALLY FAULT TOLERANT 6 × 7

MANIPULATOR JACOBIAN GIVEN IN (11)

i nT
i rT

i

1
ˆ

0.000 0.000 1.000
˜ ˆ−1.065 0.113 0.000

˜

2
ˆ−0.172 −0.827 −0.536

˜ ˆ
0.272 −0.520 0.715

˜

3
ˆ

0.877 0.418 −0.239
˜ ˆ

0.302 −0.785 −0.263
˜

4
ˆ−0.408 −0.004 −0.913

˜ ˆ
0.530 0.761 −0.240

˜

5
ˆ

0.473 −0.802 0.364
˜ ˆ

0.460 −0.098 −0.814
˜

6
ˆ

0.065 0.983 −0.174
˜ ˆ−1.007 0.062 −0.031

˜

7
ˆ−0.836 0.233 0.497

˜ ˆ
0.507 0.467 0.633

˜

Fig. 2. An example of a cylindrical geometry for an OGSP corresponding
to a realization of the optimally fault tolerant 6 × 7 manipulator Jacobian
given in (11). The labels on the struts correspond to the respective columns
of J (rows of M ). Similar parallel mechanisms have been proposed for
mounting in aerospace vehicles [19]. The ni’s for struts 2, 4, 6, and 7 have
been reversed, i.e., the corresponding rows of (11) have been multiplied by
-1.

of freedom to 9 − 2r. In this case, one should not expect to be
able to arbitrarily specify the null space of a manipulator with r >
4 degrees of redundancy. Of course there are cases where this is
possible for the right choice of the null space. Furthermore, there
could be cases where there is no real solution to the problem even
though r is sufficiently small. The dimension arguments presented
here do however provide the designer with a tool to assess the
likely feasibility of designing a mechanism with prescribed null
space properties and will be exploited in Section 4 to study the
likely utility of a newly proposed fault tolerance concept.

3. DESIGNING OPTIMALLY FAULT TOLERANT 7-
DOF SPATIAL MANIPULATOR JACOBIANS
According to equation (10), the maximum worst case relative
manipulability index for a 7-DOF manipulator is 1/

√
7. This

optimal value is achieved if and only if the null vector of the
manipulator Jacobian has components of equal magnitude, i.e.,
|n̂i| = 1/

√
7 where n̂i is the i-th component of the unit length

null vector n̂J . Hence, we can specify the null vector to obtain
an optimally fault tolerant manipulator configuration. Based on
the dimension arguments in Section 2.2, we have 22 degrees
of freedom in choosing a 7-DOF manipulator Jacobian with a
prescribed null vector. If we further require that JJT be diagonal,
the number of degrees of freedom in choosing J with a prescribed
null vector reduces to seven. An example of a nominal manipulator
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Jacobian that is optimally fault tolerant to a single failure is given
by

JT =

2
66666664

0.000 0.000 1.000 0.113 1.065 0.000
−0.175 −0.827 −0.536 0.870 0.023 −0.314

0.877 0.418 −0.239 0.297 −0.159 0.814
−0.408 −0.004 −0.913 −0.696 0.581 0.308

0.473 −0.802 0.364 −0.689 −0.553 −0.323
0.065 0.983 −0.174 0.020 −0.177 −0.993

−0.836 0.233 0.497 0.085 −0.781 0.508

3
77777775

.

(11)

This manipulator Jacobian corresponds to a 7-DOF manipulator,
and its null vector components are all equal. Consequently,
all seven relative manipulability indices corresponding to (11)
are equal to 1/

√
7. In this case, JJT is diagonal so (11)

corresponds to an OGSP. The parallel mechanism parameters for
the corresponding manipulator Jacobian are given by Table I. For
a parallel manipulator, the unit vector ni in the table indicates the
direction of the i-th strut while ri represents the point on the axis
of the i-th strut that is closest to the origin.

There are a number of different possible manipulator realizations
that can be generated from the Jacobian in (11). Clearly, the desired
failure tolerance properties are not affected by multiplying one or
more of the columns of J by −1. A parallel manipulator generated
from this Jacobian is shown in Fig. 2.

4. EQUALLY FAULT TOLERANT CONFIGURATIONS

Equation (10) served as a motivation in [18] for defining a mani-
pulator operating about a single point in the workspace to be
optimally fault tolerant to f ≤ r failures if all of its relative
manipulability indices ρi1,··· ,if are equal, i.e.,

ρi1,··· ,if =

vuut`
r
f

´
`

n
f

´ (12)

for 1 ≤ i1 < · · · < if ≤ n. In this article, we will prefer to say
that a manipulator is equally fault tolerant to f ≤ r failures at an
operating configuration if (12) holds for 1 ≤ i1 < · · · < if ≤ n at
that configuration. Note that equal fault tolerance is a local property
since it would apply to specific configurations and would be most
applicable for manipulators operating in a small workspace. If a
manipulator is equally fault tolerant to f ≤ r failures, then by (10)
it is optimally fault tolerant in a worst case relative manipulability
index sense to f ≤ r failures. However, while it is clear that an
optimal value exists, it is possible that a manipulator may not have
a configuration that is equally fault tolerant to f failures. In this
case, the optimal value is smaller than the bound given in (10). It
is the goal of this section to show that this is typically the case.

Our first result concerning equally fault tolerant configurations is
the following:

Theorem 1: If a manipulator is equally fault tolerant to f failures
where 1 < f ≤ r, then it is also equally fault tolerant to f − 1
failures. Furthermore, the manipulator is equally fault tolerant to k
failures for k = 1, 2, . . . , f .

Proof: We can prove the result by demonstrating that
ρ2

i1,··· ,if−1
=
`

r
f−1

´
/
`

n
f−1

´
for any 1 ≤ i1 < · · · < if−1 ≤ n.

Rearranging the columns of NT does not affect the overall fault
tolerance analysis so we can assume without loss of generality
that i1 = 1, · · · , if−1 = f − 1. Likewise, pre-multiplying NT by
an r × r orthogonal matrix Q does not affect the fault tolerance
analysis. Hence, by applying a QR factorization, we can further

assume without loss of generality that NT has the form

Now,

ρ2
1,··· ,f = |N11N22 · · ·Nf−1,f−1Nff |2 =

`
r
f

´
`

n
f

´ (14)

where the first equality in (14) follows by direct calculation from
(14) and the second equality follows from the assumption that
the manipulator is equally fault tolerant to f failures. Since pre-
multiplying NT by an orthogonal matrix does not affect the values
of the relative manipulability indices, we can easily determine
ρ2
1,...,f−1,j for j = f, . . . , n by first pre-multiplying (14) by

diag(If−1, Uj) where If−1 is an (f − 1) × (f − 1) identity
matrix and where Uj is an (r − f + 1) × (r − f + 1) orthogonal
matrix that zeros out the last r − f elements of the j-th column
of NT so that the (f, j) component of NT becomes ±αj where
αj =

q
N2

fj + · · · + N2
rj . We then have that for j = f, . . . , r,

ρ2
1,...,f−1,j = |N11N22 · · ·Nf−1,f−1|2α2

j . (15)

Equating (15) to the second term in (14), we conclude that αj =
|Nff | for j = f, . . . , n and zero otherwise so that

P
j α2

j = (n −
f + 1)|Nff |2. Now, the quantity

P
j α2

j is equal to the sum of the
squares of the components of the last r−f+1 rows of NT and since
the rows of NT have unit length, we have that

P
j α2

j = r−f +1
so that

|Nff |2 =
r − f + 1

n − f + 1
. (16)

It then follows that

ρ2
1,...,f−1 =

ρ2
1,...,f

|Nff |2 =

`
r
f

´
`

n
f

´ n − f + 1

r − f + 1
=

`
r

f−1

´
`

n
f−1

´ . (17)

Since the order of the columns did not matter, we conclude that the
relative manipulability index for any f −1 failures is given by (17).
Repeated application of this result implies that the manipulator is
equally fault tolerant to k failures for k = 1, 2, . . . , f . �

The reason that Theorem 1 will play such an important role in
this regard is the fact that it forces PN to have a particularly simple
structure when the manipulator is equally fault tolerant to more than
one failure. If J is equally fault tolerant to a single failure, then the
diagonal elements of PN are all equal to r/n. If J is equally fault
tolerant to f ≥ 2, then by Theorem 1 it is equally fault tolerant to
single failures and to two failures. Hence, the (i, j) principal minor
of the symmetric matrix PN is˛̨̨

˛ r/n pij

pji r/n

˛̨̨
˛ = r2

n2
− p2

ij =
r(r − 1)

n(n − 1)
(18)

where we have used the fact that pji = pij and where the last
equality follows from the assumption of equal fault tolerance to
two failures. Solving for pij gives pij = ±1

n

q
r(n−r)

n−1
for all 1 ≤

i < j ≤ n. Hence, when J is equally fault tolerant to f ≥ 2
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failures, the diagonal elements of PN are all equal and the off-
diagonal elements of PN all have the same magnitude, i.e., PN has
the form

PN =

2
666664

a ±b ±b · · · ±b
±b a ±b · · · ±b
±b ±b a · · · ±b
...

...
...

. . .
...

±b ±b ±b · · · a

3
777775 (19)

where a = r
n

and b = −1
n

q
r(n−r)

n−1
.

Once again consider a manipulator with two degrees of redun-
dancy, and suppose that the manipulator is equally fault tolerant to
two failures. Since the rank of PN would then be two, it follows
that the 3× 3 principal minors of PN are zero; otherwise, the rank
of PN would be greater than or equal to three. Any 3×3 principal
minor of PN necessarily has the form˛̨̨

˛̨̨ a ±b ±b
±b a ±b
±b ±b a

˛̨̨
˛̨̨ = a3 − 3ab2 ± 2b3. (20)

Since one of these two quantities is zero, so is their product so that

0 = (a3 − 3ab2 + 2b3)(a3 − 3ab2 − 2b3)

= (a − b)2(a + 2b)(a + b)2(a − 2b)

= (a2 − b2)2(a2 − 4b2). (21)

We thus conclude that a2 = b2 or a2 = 4b2. Substituting in the
expressions for a and b yields that n = 0 or n = 3, respectively.
As n = 0 does not make sense, we conclude that n = 3.
Equivalently, the workspace has m = n − r = 3 − 2 = 1 degree
of freedom so that the corresponding Jacobian is a 1 × 3 matrix.
Equal fault tolerance then dictates that the Jacobian has the form
J =

ˆ ±α ±α ±α
˜

for some α > 0.
The above observations prove the following result:

Theorem 2: No 8-DOF spatial manipulator can be equally fault
tolerant to two simultaneous joint failures.

We are now ready to consider the case when J is equally fault
tolerant to f ≥ 3 failures. Applying similar arguments as above,
we obtain the following result:

Theorem 3: Regardless of a manipulator’s geometry or the
amount of kinematic redundancy present in a manipulator, no fully
spatial manipulator Jacobian can be equally fault tolerant to three
or more joint failures.

Proof: To simplify matters, note that multiplying any of the
columns of J by −1 does not affect the fault tolerance properties
of J . In doing so, the corresponding columns of NT are multiplied
by −1, in which case the corresponding rows and columns of PN

are multiplied by −1. Hence, without loss of generality, we can
assume that the first row and column of PN consists of a single a
followed by n − 1 b’s. Thus, for 1 < i < j ≤ n,

PN

„
1 i j
1 i j

«
=

˛̨̨
˛̨̨a b b
b a ±b
b ±b a

˛̨̨
˛̨̨ . (22)

With +b, this becomes a3 − 3ab2 + 2b3 and with −b, it becomes
a3 − 3ab2 − 2b3. These quantities are equal if and only if b = 0

and since b = −1
n

q
r(n−r)

n−1
�= 0, it follows that the various pij’s

must all be equal for 1 < i < j ≤ n for the equal fault tolerance
property to hold. If pij = b for 1 < i < j ≤ n then we can write

PN = (a − b)I + b

2
64

1
...
1

3
75 ˆ1 · · · 1

˜
, (23)

which has eigenvalues {a − b, . . . , a − b, a + (n − 1)b}. On the
other hand, if pij = −b for 1 < i < j ≤ n then we can write

PN = (a + b)I − b

2
6664
−1
1
...
1

3
7775 ˆ−1 1 · · · 1

˜
. (24)

In this case, the eigenvalues of PN are {a+b, . . . , a+b, a−(n−
1)b}. Since PN is a projection matrix, its set of eigenvalues consists
of ones and zeros. There are n−1 eigenvalues of (24) that are equal
to a + b = r

n
− 1

n

q
r(n−r)

n−1
< a < 1. Since this quantity is bigger

than zero but less than one, it follows that (24) cannot correspond to
a projection matrix. Consider now the eigenvalues of (23). The n−1

eigenvalues that are equal to a − b = r
n

+ 1
n

q
r(n−r)

n−1
are positive

so they must equal one if (23) is a projection operator. Setting
this quantity equal to one yields the result that r = n − 1, which
upon substitution into a + (n − 1)b yields zero. We thus conclude
that PN has rank r = n − 1 and that the workspace dimension is
m = 1. Hence, any J that is equally fault tolerant to three or more
joint failures necessarily has the form J =

ˆ ±α · · · ±α
˜

for some α > 0. �
As the proof indicates, Theorem 3 is applicable to any manipulator
whose workspace dimension is greater than one, e.g., no planar
manipulator can be equally fault tolerant to three or more failures
regardless of how many joints it may have.

We now consider the case when a fully spatial manipulator is
equally fault tolerant to two failures. We have already shown that
this is impossible for r = 2. Once again, we assume without loss
of generality that PN has the form

PN =

2
666664

a b b · · · b
b a ±b · · · ±b
b ±b a · · · ±b
...

...
...

. . .
...

b ±b ±b · · · a

3
777775 . (25)

We use the property that PN is a projection to determine restrictions
on the number of degrees of redundancy that a fully spatial
manipulator can have for the equal fault tolerance property to hold.
As a projection, P 2

N = PN so that for j > 1,

b = p1j = (PN )1j = (P 2
N )1j = 2ab + qb2 (26)

where q is the integer q = n1 − n2 − 1 where n1 denotes the
number of elements in the j-th column of PN that are equal to
b and n2 denotes the number of elements equal to −b. Clearly
n1 + n2 = n − 1 as (PN )jj = a and (PN )ij = ±b for i �= j.
Since b �= 0, (26) yields

q =
1 − 2a

b
. (27)

For a redundant fully spatial manipulator, m = 6 and n = r + 6.
Substituting the expressions for a and b into (27) gives

q =
1 − 2r

n

−1
n

q
r(n−r)

n−1

= (r − 6)

r
r + 5

6r
. (28)
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The requirement that (27) is an integer is a necessary condition for
the existence of a manipulator having r > 1 degrees of redundancy
with the property that it is equally fault tolerant to two failures.

Unfortunately, the requirement that q is an integer eliminates
most if not all practical manipulator designs since only specific
values of r are feasible. Indeed, it was shown in Section II-B that
one can only expect to be able to design for a prescribed null space
if r ≤ 12. Testing r = 2, 3, . . . , 12, one finds that only r = 3, 6,
and 10 result in integer values of q in (28). Note that this further
confirms that no fully spatial manipulator Jacobian corresponding to
an 8-DOF manipulator can be equally fault tolerant to two failures.
Consider now the case when r = 3. We have already noted that
n1−n2 = q+1 and n1+n2 = n−1 = r+5 so that 2n1 = q+r+6,
or, equivalently, q+r = 2n1−6. Hence, q+r is an even number so
that q and r have the same parity, i.e., both are even or both are odd.
However, for r = 3, we have q = −2 implying that r = 3 is not
a feasible solution. Thus, if a redundant fully spatial manipulator
with r ≤ 12 degrees of redundancy is equally fault tolerant to two
joint failures then r = 6 or 10.

Ten or even six degrees of redundancy would be a considerable
amount of redundancy to add to a manipulator and adding that
much redundancy may even make the manipulator more prone to
a joint failure. So it could be argued that even if one could design
a manipulator to be equally fault tolerant to two failures, it would
be undesirable to do so because of the high number of degrees
of redundancy required. This observation is even more significant
for an orthogonal GSP. The additional requirement that JJT be
diagonal reduces our freedom in designing a manipulator Jacobian
with a prescribed null space to 9 − 2r degrees of freedom. For
r = 6, this value becomes 9 − 2(6) = −3 so that there are three
more design constraints than degrees of freedom to design such a
manipulator.

Note that the above argument does not conclusively prove that
no fully spatial manipulator Jacobian is equally fault tolerant to
two failures, but rather that if such a manipulator existed, it would
require a significant, if not prohibitively high, number of degrees
of redundancy.

5. CONCLUSIONS AND FUTURE WORK
In this article, the authors used relative manipulability indices to
evaluate the fault tolerance of kinematically redundant manipulators
to multiple joint failures. The authors provided an alternative proof
of the recently proven result that the sum of the squares of the
relative manipulability indices corresponding to f failures is equal
to
`

r
f

´
. This result provides an upper bound for the worst case

relative manipulability index of a manipulator with one or more
failed joints. Previously, this upper bound was used to characterize
optimal fault tolerance to multiple failures. However, in this article,
it was shown that this upper bound is typically not achieved and
is therefore not suitable for judging optimal fault tolerance. This
clearly indicates the need for further consideration when designing
robotics systems that are tolerant to multiple joint failures.

In the future, the authors will investigate potential methods for
finding a family of 8-DOF Gough-Stewart platforms with optimal

worst case fault tolerance for up to two failures by identifying the
required properties of the null space of the manipulator Jacobian.
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