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ABSTRACT
A direct adaptive nonlinear tracking control framework

for multivariable nonlinear uncertain systems with actuator
amplitude and rate saturation constraints is developed. To
guarantee asymptotic stability of the closed-loop tracking
error dynamics in the face of amplitude and rate saturation
constraints, the adaptive control signal to a given reference
(governor or supervisor) system is modified to effectively ro-
bustify the error dynamics to the saturation constraints. An
illustrative numerical example is provided to demonstrate the
efficacy of the proposed approach.

1 INTRODUCTION
In light of the increasingly complex and highly uncer-

tain nature of dynamical systems requiring controls, it is
not surprising that reliable system models for many high
performance engineering applications are unavailable. In
the face of such high levels of system uncertainty, robust
controllers may unnecessarily sacrifice system performance
whereas adaptive controllers are clearly appropriate since
they can tolerate far greater system uncertainty levels to im-
prove system performance. However, an implicit assump-
tion inherent in most adaptive control frameworks is that the
adaptive control law is implemented without any regard to
actuator amplitude and rate saturation constraints. Of course,
any electromechanical control actuation device is subject to
amplitude and/or rate constraints leading to saturation non-
linearities enforcing limitations on control amplitudes and
control rates. As a consequence, actuator nonlinearities arise
frequently in practice and can severely degrade closed-loop
system performance, and in some cases drive the system to
instability. These effects are even more pronounced for adap-
tive controllers which continue to adapt when the feedback
loop has been severed due to the presence of actuator satura-
tion causing unstable controller modes to drift, which in turn
leads to severe windup effects.

The research literature on adaptive control with actua-
tor saturation effects is rather limited. Notable exceptions
include [1–6]. However, the results reported in [1–6] are
confined to linear plants with amplitude saturation. Many
practical applications involve nonlinear dynamical systems

with simultaneous control amplitude and rate saturation. The
presence of control rate saturation may further exacerbate
the problem of control amplitude saturation. For example, in
advanced tactical fighter aircraft with high maneuverability
requirements, pilot induced oscillations [7, 8] can cause ac-
tuator amplitude and rate saturation in the control surfaces,
leading to catastrophic failures.

In this paper we develop a direct adaptive control frame-
work for adaptive tracking of multivariable nonlinear uncer-
tain systems with amplitude and rate saturation constraints.
In particular, we extend the Lyapunov-based direct adaptive
control framework developed in [9] to guarantee asymptotic
stability of the closed-loop tracking system; that is, asymp-
totic stability with respect to the closed-loop system states
associated with the tracking error dynamics, in the face of
actuator amplitude and rate saturation constraints. Specifi-
cally, a reference (governor or supervisor) dynamical system
is constructed to address tracking and regulation by deriv-
ing adaptive update laws that guarantee that the error system
dynamics are asymptotically stable, and adaptive controller
gains are Lyapunov stable. In the case where the actuator
amplitude and rate are limited, the adaptive control signal to
the reference system is modified to effectively robustify the
error dynamics to the saturation constraints, thus guarantee-
ing asymptotic stability of the error states.

2 ADAPTIVE TRACKING FOR NONLINEAR UN-
CERTAIN SYSTEMS
In this section we consider the problem of characterizing

adaptive feedback tracking control laws for nonlinear uncer-
tain systems. Specifically, we consider the controlled non-
linear uncertain systemG given by

ẋ(t) = f (x(t))+Bu(t), x(0) = x0, t ≥ 0, (1)

wherex(t)∈Rn, t ≥ 0, is the state vector,u(t)∈Rm, t ≥ 0, is
the control input,f :Rn→Rn, the matrixB∈Rn×m is of the

form B =
[

0m×(n−m) BT
s

]T
, with Bs ∈ Rm×m full rank and

such that there existsΛ ∈ Rm×m for which BsΛ is positive
definite. The control inputu(·) in (1) is restricted to the class
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of admissible controlssuch that (1) has a unique solution
forward in time. Here, we assume that adesiredtrajectory
(command)xd(t), t ≥ 0, is given and the aim is to determine
the control inputu(t), t ≥ 0, so thatlimt→∞ ‖x(t)−xd(t)‖=
0. To achieve this, we construct a reference systemGr given
by

ẋr1(t) = Arxr1(t)+Brr(t), xr1(0) = xr10, t ≥ 0, (2)

where xr1(t) ∈ Rn, t ≥ 0, is the reference state vector,
r(t) ∈ Rm, t ≥ 0, is the reference input, andAr ∈ Rn×n and
Br ∈Rn×m are such that the pair(Ar,Br) is stabilizable. Now,
we designu(t), t ≥ 0, and a bounded piecewise-continuous
reference functionr(t), t ≥ 0, such thatlimt→∞ ‖x(t) −
xr1(t)‖ = 0 andlimt→∞ ‖xr1(t)−xd(t)‖ = 0, respectively, so
that limt→∞ ‖x(t)− xd(t)‖ = 0. The following result pro-
vides a control architecture that achieves tracking error con-
vergence in the case where the dynamics in (1) are known.
The case whereG is unknown is addressed in Theorem 2.2.
For the statement of this result, define the tracking error
e(t) , x(t)−xr1(t), t ≥ 0.

Theorem 2.1. Consider the nonlinear systemG given by
(1) and the reference systemGr given by (2). Assume there
exists gain matricesΘ∗ ∈ Rm×s and Θ∗

r ∈ Rm×m, and F :
Rn →Rs such that

0 = f (x)+BΛΘ∗F(x)−Arx, x∈Rn, (3)

0 = BΛΘ∗
r −Br, x∈Rn, (4)

hold. Furthermore, letK ∈Rm×n be given by

K =−R−1
2 BT

r P, (5)

where then×n positive definite matrixP satisfies

0 = AT
r P+PAr−PBrR

−1
2 BT

r P+R1, (6)

and R1 ∈ Rn×n and R2 ∈ Rm×m are arbitrary positive-
definite matrices. Then the feedback control law

u(t) = Λ(Θ∗
1ϕ1(t)+Θ∗

r (t)r(t)) , t ≥ 0, (7)

where

Θ∗
1 ,

[
Θ∗ Θ∗

r ΛTBT
] ∈Rm×(m+n+s), (8)

ϕ1(t) ,
[

FT(x(t)) eT(t)KT −1
2kλeT(t)P

]T ∈Rm+n+s,

t ≥ 0, (9)

with kλ > 0, guarantees that the zero solutione(t)≡ 0, t ≥ 0,

of the error dynamics given by

ė(t) = ( f (x(t))+Bu(t))− (Arxr1(t)+Brr(t)),
e(0) = x0−xr0 , e0, t ≥ 0, (10)

is globally asymptotically stable.

Proof. Using the feedback control law given by (7), (10) be-
comes

ė(t) = f (x(t))+BΛΘ∗
1ϕ(t)+BΛΘ∗

r r(t)−Arxr1(t)
−Brr(t), e(0) = e0, t ≥ 0, (11)

which, using (8) and (9), we can rewrite as

ė(t) =
(

Ar +BΛΘ∗
r K− 1

2
kλBΛΛTBTP

)
e(t)

+( f (x(t))+BΛΘ∗F(x(t))−Arx(t))
+(BΛΘ∗

r −Br) r(t), e(0) = e0, t ≥ 0. (12)

Now, using (3) and (4), it follows from (12) that

ė(t) = (Ar +BrK− 1
2

kλBΛΛTBTP)e(t),

e(0) = e0, t ≥ 0. (13)

Now consider the Lyapunov function candidate

V(e) = eTPe, (14)

whereP > 0 satisfies (6). Note thatV(0) = 0 and, since
P is positive definite,V(e) > 0 for all e 6= 0. Now, letting
e(t), t ≥ 0, denote the solution to (19), using (6), it follows
from (13) that the Lyapunov derivative along the closed-loop
system trajectories is given by

V̇(e(t)) = −eT(t)(R1 +KTR2K +Ke)e(t)≤ 0, (15)

whereKe , kλPBΛΛTBTP. Hence, the closed-loop system
given by (7) and (10) is Lyapunov stable. Furthermore, since
R1 + KTR2K + Ke > 0, it follows from Theorem 4.4 of [10]
that lim

t→∞
e(t) = 0, which concludes this proof.

Theorem 2.1 provides sufficient conditions for charac-
terizing tracking controllers for a given nominal nonlinear
dynamical systemG . In the next result we show how to con-
struct adaptive gainsΘ(t)∈Rm×s, t ≥ 0, andΘr(t)∈Rm×m,
t ≥ 0, for achieving tracking control in the face of system
uncertainty. For this result we donot require explicit knowl-
edge of the gain matricesΘ∗ andΘ∗

r ; all that is required is
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the existence ofΘ∗ andΘ∗
r such that the compatibility rela-

tions (3) and (4) hold.

Theorem 2.2. Consider the nonlinear systemG given by
(1) and the reference systemGr given by (2). Assume there
exists gain matricesΘ∗ ∈ Rm×s andΘ∗

r ∈ Rm×m, and func-
tion F : Rn → Rs, such that (3) and (4) hold. Furthermore,
let K ∈ Rm×n be given by (5), whereP =

[
P1 P2

]
> 0 sat-

isfies (6), withP1 ∈ Rn×(n−m), P2 ∈ Rn×m. In addition, let
Γ1 ∈R(m+n+s)×(m+n+s) andΓr2 ∈Rm×m be positive definite,
and defineΘ∗

1 ,
[

Θ∗ Θ∗
r ΛTBT

] ∈ Rm×(m+n+s). Then the
adaptive feedback control law

u(t) = Λ(Θ1(t)ϕ(t)+Θr2(t)r(t) ) , t ≥ 0, (16)

whereΘ1(t)∈Rm×(m+n+s), t ≥ 0, andΘr2(t)∈Rm×m, t ≥ 0,
are estimates ofΘ∗

1 andΘ∗
r , respectively, with update laws

Θ̇1(t) = −PT
2 e(t)ϕ1(t)Γ1, Θ1(0) = Θ10, t≥0, (17)

Θ̇r2(t) = −PT
2 e(t)rT(t)Γr2, Θr2(0) = Θr20, (18)

guarantees that the closed-loop system given by (10), (17)–
(18), with control input (16), is Lyapunov stable, and the er-
ror e(t), t ≥ 0, converges to zero asymptotically.

Proof. With u(t), t ≥ 0, given by (16) it follows from (3) and
(4) that the error dynamicse(t), t ≥ 0, are given by

ė(t) = (Ar +BrK− 1
2

kλBΛΛTBTP)e(t)

+BΛ(Θ1(t)−Θ∗
1)ϕ1(t)+BΛ(Θr2(t)−Θ∗

r2) r(t),
e(0) = e0, t ≥ 0, (19)

Now consider the Lyapunov function candidate

V(e,Θ1,Θr2) = eTPe+ tr
(
BsΛ(Θ1−Θ∗

1)Γ
−1
1 (ΘT

1−Θ∗T
1 )

)

+tr
(
BsΛ(Θr−Θ∗

r )Γ
−1
r (ΘT

r −Θ∗T
r )

)
, (20)

whereP > 0 satisfies (6),Γ1 and Γr2 are positive definite.
Note thatV(0,Θ∗

1,Θ
∗
r2) = 0 and, sinceP, Γ1, Γr2 andBsΛ

are positive definite,V(e,Θ1,Θr2) > 0 for all (e,Θ1,Θr2) 6=
(0,Θ∗

1,Θ
∗
r2). Now, lettinge(t), t ≥ 0, denote the solution to

(19), using (6), it follows that the Lyapunov derivative along
the closed-loop system trajectories is given by

V̇(e(t),Θ1(t),Θr2(t))= eT(t)Pė(t)+ ėT(t)Pe(t)
+2tr

(
BsΛ(Θ1(t)−Θ∗

1)Γ
−1
1 Θ̇T

1(t)
)

+2tr
(
BsΛ(Θr2(t)−Θ∗

r2)Γ
−1
r2 Θ̇T

r2(t)
)
,

t ≥ 0, (21)

= 2eT(t)PBΛ(Θ1(t)−Θ∗
1)ϕ1(t)

+2tr
(
BsΛ(Θ1(t)−Θ∗

1)Γ
−1
1 Θ̇T

1(t)
)

+2eT(t)PBΛ(Θr2(t)−Θ∗
r2)r(t)

+2tr
(
BsΛ(Θr2(t)−Θ∗

r2)Γ
−1
r2 Θ̇T

r2(t)
)

eT(t)P(Ar +BrK)e(t)−eT(t)Kee(t)
+eT(t)(Ar +BrK)TPe(t). (22)

Next, using (17), (18) and the fact thatPB= P2Bs, we obtain

V̇(e(t),Θ1(t),Θr2(t)) = −eT(t)(R1 +KTR2K +Ke)e(t)
+2tr

(
BsΛ(Θ1(t)−Θ∗

1)(ϕ1(t)eT(t)P2 +Γ−1
1 Θ̇T

1(t))
)

+2tr
(
BsΛ(Θr2(t)−Θ∗

r2)(r(t)e
T(t)P2 +Γ−1

r2 Θ̇T
r2(t))

)
,

= −eT(t)(R1 +KTR2K +Ke)e(t),
t ≥ 0, (23)

hence, the results obtained in Theorem 2.1 are conserved;
that is, the closed-loop system given by (10), (16)–(18) is
Lyapunov stable, and, asR1 + KTR2K + Ke > 0, it follows
that lim

t→∞
e(t) = 0.

Remark 2.1. Note that the conditions in Theorem 2.2 imply
that e(t) → 0 as t → ∞ and hence it follows from (17) and
(18) thatΘ̇(t)→ 0, Θ̇r(t)→ 0 ast → ∞.

It is important to note that the adaptive law (16)–(18)
doesnot require explicit knowledge of the gain matricesΘ∗
andΘ∗

r . Furthermore, no specific knowledge of the structure
of the nonlinear termf (x) or matrixB are required to apply
Theorem 2.2; all that is required is the existence ofF(x) and
Λ such that the compatibility relations (3) and (4) hold for a
given reference systemGr.

3 DYNAMIC ADAPTIVE TRACKING FOR NONLIN-
EAR UNCERTAIN SYSTEMS
In this Section, we build upon the results of the Section 2

and construct an adaptive, dynamic controller for system (1),
with stability properties identical to that provided by Theo-
rem 2.2.

The control input is now generated by a dynamic com-
pensator of the form

ẋc(t) = w(t), xc(0) = xc0, t ≥ 0, (24)

u(t) = xc(t), (25)

wherexc(t)∈Rm, t ≥ 0, is the compensator state, andw(t)∈
Rm, t ≥ 0. The expression ofw(t), t ≥ 0, leading to an appro-
priate control inputu(t), t ≥ 0, can be obtained by building
upon the control law presented in the previous Section us-
ing various techniques. One such technique is backstepping
([11]). Treating the expression of the control law (7) as a
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desirable form ofu(t), t ≥ 0, (also referred to as virtual com-
mand), expressions forw(t), t ≥ 0, can be derived guaran-
teeing convergence ofu(t), t ≥ 0, to this desirable form and
accounting for the transient error; ultimately, the properties
stated in Theorem 2.1 and Theorem 2.2 are conserved.

To account for the compensator state, we modify the ref-
erence system (2) as follows,

ẋr(t) =
[

Ar Br

0m×m −τ−1
r

]
xr(t)+

[
0n×m

τ−1
r

]
r(t), xr(0) = xr0,

t ≥ 0, (26)

where xr(t) =
[

xT
r1(t) xT

r2(t)
]T

, t ≥ 0, with xr1(t) ∈ Rn,
xr2(t) ∈Rm, t ≥ 0, andτr ∈Rm×m is positive definite.

As mentioned above, the expression ofu(t), t ≥ 0, pro-
vided by (7) becomes a desirable form

u∗d(t) , Λ(Θ∗
1ϕ1(t)+Θ∗

r2xr2(t) ) , t ≥ 0, (27)

with r(t), t ≥ 0, in (7) being replaced byxr2(t), t ≥ 0, to ac-
count for the modification to the reference system. With this
definition ofu∗d(t), t ≥ 0, the error dynamics (10) becomes

ė(t) = (Ar +BrK +Ke)e(t)+B(u(t)−u∗d(t)) , e(0) = e0,

t ≥ 0, (28)

whereu∗d(t), t ≥ 0, is such that foru(t) = u∗d(t), t ≥ 0, we
can guarantee thate(t), t ≥ 0, converges to zero, as stated in
Theorem 2.1. Defining the errore∗u(t) , u(t)−u∗d(t), t ≥ 0,
the remaining problem is to find the appropriate expres-
sion forw(t), t ≥ 0, which we denotew∗(t), t ≥ 0, such that
e∗u(t), t ≥ 0, converges to zero.

Note that a number of constant parameters in (27) are
uncertain and will be estimated, with appropriate update laws
similar to those in Theorem 2.2. Ultimately, the expression
we desireu(t), t ≥ 0, to track is

ud(t) = Λ(Θ1(t)ϕ1(t)+Θr2(t)xr2(t)) , t ≥ 0, (29)

whereΘ1(t) ∈ Rm×(m+n+s),Θr2(t) ∈ Rm×m, t ≥ 0, are esti-
mates ofΘ∗

1 andΘ∗
r , respectively.

Backstepping techniques are classically plagued with a
well documented issue referred to as “explosion of terms”
([12]). As the derivation of the control law progresses
through the backstepping procedure, the expressions in-
volved in the derivations become increasingly expansive,
to an extent that the final expression of the control law
can become difficult to manage. More specifically, the ex-
pression ofw∗(t), t ≥ 0, will in our case include that of
u̇d(t), t ≥ 0, that is, with update laws similar to that from The-

orem 2.2, andΘ1(t) =
[

Θ11(t) Θ12(t)
]
, t ≥ 0, with Θ11(t)∈

Rm×s,Θ12(t) ∈Rm×m+n, t ≥ 0,

u̇d(t) = Λ
(
−PT

2 e(t)
(
ϕT

1(t)Γ1ϕ1(t)+xT
r2(t)Γr2xr2(t)

)

+Θ11(t)
dF(x(t))

dx(t)
( f (x(t))+Bu(t))

+Θ12(t)
[

K
−1

2kλP

]
ė(t)+Θr2(t)τ−1

r (xr2(t)− r(t))
)
,

t ≥ 0, (30)

with Γ1 ∈ R(m+n+s)×(m+n+s), Γr2 ∈ Rm×m, Γ1 > 0, Γ2 > 0.
Note that the above expression can be rewritten as

u̇d(t) = g(t)+h(t)Θ∗
2ϕ2(t), t ≥ 0, (31)

where

h(t) , ΛΘ1(t)




dF(x(t))
dx(t)
K

−1
2kλP


, Θ∗

2 , B
[−ΛΘ∗ Im

]
, (32)

ϕ2(t) ,
[

F(x(t))T u(t)T
]T

, t ≥ 0, (33)

and

g(t),Λ
(
−PT

2 e(t)
(
ϕT

1(t)Γ1ϕ1(t)+xT
r2(t)Γr2xr2(t)

)

−Θ12(t)
[

KT −1
2kλP

]T
ẋr1(t)

+Θr2(t)τ−1
r (xr2(t)− r(t))

)
+h(t)Arx(t),

t ≥ 0, (34)

which allows to isolate the unknown termΘ∗
2 in u̇d(t), t ≥ 0.

Next, we build upon the results in Theorem 2.2, and
present a control algorithm providing the same stability
properties, but for a control input generated by (24)–(25).

Theorem 3.1. Consider the controlled nonlinear systemG
given by (1) and reference system (26). Assume there ex-
ist gain matricesΘ∗ ∈ Rm×s and Θ∗

r ∈ Rm×m, and a func-
tion F : Rn → Rs, such that (3) and (4) hold. Further-
more, letK ∈Rm×n be given by (5), whereP=

[
P1 P2

]
> 0,

with P1 ∈ Rn×(n−m), P2 ∈ Rn×m, satisfies (6), and define
Θ∗

1 ,
[

Θ∗ Θ∗
r ΛTBT

] ∈Rm×(m+n+s), Θ∗
2 , B

[−ΛΘ∗ Im
] ∈

Rn×(m+s), andΘ∗
3 , BT ∈Rm×n. Consider the control input

u(t), t ≥ 0, generated by (24)–(25), where

w(t) = g(t)+h(t)Θ2(t)ϕ2(t)−2Θ3(t)Pe(t)−Kueu(t),
t ≥ 0, (35)
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with h(t) ∈ Rm×n, t ≥ 0, given by (33),g(t) ∈ Rm, t ≥ 0,

given by (34),ϕ2(t) ,
[

F(x(t))T u(t)T
]T

, Ku ∈ Rm×m is
positive definite, andΘ2(t), Θ3(t), t ≥ 0, are estimates ofΘ∗

2
andΘ∗

3, respectively. The tracking errors are defined as

e(t) , x(t)−xr1(t), eu(t) , u(t)−ud(t), t ≥ 0, (36)

where

ud(t) = Λ(Θ1(t)ϕ1(t)+Θr2(t)xr2(t)) , t ≥ 0, (37)

ϕ1(t) ,
[

FT(x(t)) eT(t)KT −1
2kλeT(t)P

]T
, (38)

with ϕ1(t) ∈Rm+n+s, t ≥ 0, andΘ1(t), Θr2(t), t ≥ 0, are es-
timates ofΘ∗

1 andΘ∗
r , respectively. These estimatesΘ1(t) ∈

Rm×(m+n+s),Θr2(t) ∈Rm×m, Θ2(t) ∈Rn×(m+s) andΘ3(t) ∈
Rm×n, t ≥ 0, are obtained as follows

Θ̇1(t) = −PT
2 e(t)ϕT

1(t)Γ1, Θ1(0) = Θ10, t ≥ 0,(39)

Θ̇r2(t) = −PT
2 e(t)xT

r2(t)Γr2, Θr2(0) = Θr20, (40)

Θ̇2(t) = −h(t)Teu(t)ϕ2(t)TΓ2, Θ2(0) = Θ20, (41)

Θ̇3(t) = eu(t)eT(t)PΓ3, Θ3(0) = Θ30, (42)

where Γ1 ∈ R(m+n+s)×(m+n+s), Γr2 ∈ Rm×m, Γ2 ∈
R(m+s)×(m+s), andΓ3 ∈Rn×n, are positive definite.

Then, the control inputu(t), t ≥ 0, generated by (35),
guarantees that the closed-loop system given by (10), (39)–
(42), with control input generated by (24)–(25) with (35), is
Lyapunov stable, and the errorse(t),eu(t), t ≥ 0, converge to
the origin, asymptotically.

Proof. From (36) and (37), we have

u(t) = Λ(Θ1(t)ϕ1(t)+Θr2(t)xr2(t))+eu(t), t ≥ 0,(43)

which we expand, using (38), into

u(t) = Λ(Θ∗F(x(t))+Θ∗
r (xr2(t)+Ke(t)))

−1
2

kλΛΛTBTPe(t)+Λ(Θ1(t)−Θ∗
1)ϕ1(t)

+Λ(Θr2(t)−Θ∗
r2)xr2(t)+eu(t), t ≥ 0. (44)

Substituting (3), (4), and (44) in (10), we obtain

ė(t) = (Ar +BrK− 1
2

kλΛΛTBTP)e(t)

+BΛ(Θ1(t)−Θ∗
1)ϕ1(t)+BΛ(Θr2(t)−Θ∗

r2)xr2(t)
+Beu(t), e(0) = e0, t ≥ 0, (45)

Similarly, from (24), (25), (31) and (36),

ėu(t) = w(t)−g(t)−h(t)Θ∗
2ϕ2(t), eu(0) = eu0, t ≥ 0, (46)

which, using (35) andΘ∗
3 = BT, can be rewritten as

ėu(t) = −2BTPe(t)−Kueu(t)+h(t)(Θ2(t)−Θ∗
2)ϕ2(t)

+2(Θ∗
3−Θ3(t))Pe(t), eu(0) = eu0, t ≥ 0.(47)

Now consider the Lyapunov function candidate

V(e,eu,Θ1,Θ2,Θ3,Θr2) =

eTPe+
1
2

eT
ueu + tr

(
BsΛ(Θ1−Θ∗

1)Γ
−1
1 (ΘT

1 −Θ∗T
1 )

)

+tr
(
(Θ2−Θ∗

2)Γ
−1
2 (ΘT

2 −Θ∗T
2 )

)

+tr
(
(Θ3−Θ∗

3)Γ
−1
3 (ΘT

3 −Θ∗T
3 )

)

+tr
(
BsΛ(Θr2−Θ∗

r2)Γ
−1
r2 (ΘT

r2−Θ∗T
r2 )

)
, (48)

where P > 0 satisfies (6). Note that
V(0,0,Θ∗

1,Θ
∗
2,Θ

∗
3,Θ

∗
r2) = 0 and, sinceP, Γ1, Γ2, Γ3, Γr2

and BsΛ are positive definite,V(e,eu,Θ1,Θ2,Θ3,Θr2) > 0
for all (e,eu,Θ1,Θ2,Θ3,Θr2) 6= (0,0,Θ∗

1,Θ
∗
2,Θ

∗
3,Θ

∗
r2). Now,

using (6), (39)–(42), and (36), it follows that the Lyapunov
derivative along the closed-loop system trajectories is given
by

V̇(e(t),eu(t),Θ1(t),Θ2(t),Θ3(t),Θr2(t)) =
eT(t)Pė(t)+ ėT(t)Pe(t)+eu(t)Tėu(t)
+2tr

(
BsΛ(Θ1(t)−Θ∗

1)Γ
−1
1 Θ̇T

1(t)
)

+2tr
(
BsΛ(Θr2(t)−Θ∗

r2)Γ
−1
r2 Θ̇T

r2(t)
)

+2tr
(
(Θ2(t)−Θ∗

2)Γ
−1
2 Θ̇T

2(t)
)

+2tr
(
(Θ3(t)−Θ∗

3)Γ
−1
3 Θ̇T

3(t)
)
, t ≥ 0,

= eT(t)P(Ar +BrK)e(t)+eT(t)(Ar +BrK)TPe(t)
−eT(t)Kee(t)−eT

u(t)Kueu(t)
+2tr

(
BsΛ(Θ1(t)−Θ∗

1)
(
Γ−1

1 Θ̇T
1(t)+ϕ1(t)eT(t)P2

))

+2tr
(
BsΛ(Θr2(t)−Θ∗

r2)
(
Γ−1

r2 Θ̇T
r2(t)+xr2(t)eT(t)P2

))

+2tr
(
(Θ2(t)−Θ∗

2)
(
Γ−1

2 Θ̇T
2(t)+ϕ2(t)eT

u(t)h(t)
))

+2tr
(
(Θ3(t)−Θ∗

3)
(
Γ−1

3 Θ̇T
3(t)−Pe(t)eT

u(t)
))

,

=−eT(t)(R1 +KTR2K +Ke)e(t)−eT
u(t)Kueu(t), (49)

hence, the closed-loop system given by (10), (46), (39)–(42)
is Lyapunov stable. Furthermore, sinceR1 +KTR2K +Ke >
0 and Ku > 0, it follows from Theorem 4.4 of [10] that
lim
t→∞

e(t) = 0, andlim
t→∞

eu(t) = 0.

Remark 3.1. Note that a parallel can be drawn between
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(24) and the actuator dynamics of a physical system. The
form of (24) was chosen to be an integrator for simplicity, but
it can be readily modified to represent the actuator dynam-
ics of a considered system. Hence, the presented approach
can allow to elegantly account for actuator dynamics in the
control framework.

4 ADAPTIVE TRACKING WITH ACTUATOR AMPLI-
TUDE AND RATE SATURATION CONSTRAINTS
In this section we extend the adaptive control framework

presented in Section 3 to account for actuator amplitude and
rate saturation constraints. Recall that Theorem 2.2 guaran-
tees convergence of the tracking errore(t), t ≥ 0, to a neigh-
borhood of zero; that is, the state vectorx(t), t ≥ 0, con-
verges to a neighborhood of the reference state vectorxr1(t),
t ≥ 0. Furthermore, it is important to note that the compen-
sator statew(t), t ≥ 0, given by (35), depends on therefer-
ence inputr(t), t ≥ 0, throughẋr2(t), t ≥ 0. Since for a fixed
set of initial conditions there exists a one-to-one mapping be-
tween the reference inputr(t), t ≥ 0, and the reference state
xr1(t), t ≥ 0, it follows that the control signal in (16) guaran-
tees convergence of the statex(t), t ≥ 0, to a neighborhood of
the reference statexr1(t), t ≥ 0, corresponding to the speci-
fied reference inputr(t), t ≥ 0. Of course, the reference input
r(t), t ≥ 0, should be chosen so as to guarantee asymptotic
convergence to adesiredstate vectorxd(t), t ≥ 0. However,
the choice of such a reference inputr(t), t ≥ 0, is not unique
since the reference state vectorxr1(t), t ≥ 0, can converge
to the desired state vectorxd(t), t ≥ 0, without matching its
transient behavior.

Next, we provide a framework wherein we construct a
family of reference inputsr(t), t ≥ 0, with associated refer-
ence state vectorsxr1(t), t ≥ 0, that guarantee that a given ref-
erence state vector within this family converges to a desired
state vectorxd(t), t ≥ 0, in the face of actuator amplitude and
rate saturation constraints.

From (24) and (25), it is clear thaṫu(t), t ≥ 0, is ex-
plicitly depending onw(t), t ≥ 0, which itself depends upon
the reference signalr(t), t ≥ 0. More specifically, from (24),
(25), (34) and (35),

u̇(t) = H(s(t), r), t ≥ 0,

= g1(t)+h(t)Θ2(t)ϕ2(t)−2Θ3(t)Pe(t)−Kueu(t)
−ΛΘr2(t)τ−1

r r(t), (50)

wheres(t) , (x(t),xr(t),Θr2(t),Θ2(t),Θ3(t),e(t),eu(t)), t ≥
0, and

g1(t) , Λ
(
−PT

2 e(t)
(
ϕT

1(t)Γ1ϕ1(t)+xT
r2(t)Γr2xr2(t)

)

−Θ1(t)
[

0n×s KT −1
2kλP

]T
ẋr1(t)

+Θr2(t)τ−1
r xr2(t)

)
+h(t)Arx(t), t ≥ 0.(51)

Using (50), the reference inputr(t), t ≥ 0, can be expressed
as

r(t) = H−1(s(t), u̇(t)), t ≥ 0,

= τrΘ−1
r2 Λ−1(g1(t)+h(t)Θ2(t)ϕ2(t)−2Θ3(t)Pe(t)

−Kueu(t)− u̇(t)). (52)

The above expression relates the reference input to the time
rate of change of the control input.

Next, we assume that the control signal is amplitude and
rate limited so that|ui(t)| ≤ umax and |u̇i(t)| ≤ u̇max, t ≥ 0,
i = 1, . . . ,m, whereui(t) andu̇i(t) denote theith component
of u(t) and u̇(t), respectively, andumax > 0 and u̇max > 0
are given. For the statement of our main result the following
definitions are needed. Fori ∈ {1, · · · ,m} define

σ(ui(t), u̇i(t)) ,
{

0 if |ui(t)|= umax andui(t)u̇i(t) > 0,
1 otherwise,

t ≥ 0, (53)

σ∗(ui(t), u̇i(t)) , min

{
σ(ui(t), u̇i(t)),

u̇max

|u̇i(t)|
}

, t ≥ 0. (54)

Note that for i ∈ {1, · · · ,m} and t = t1 > 0, the function
σ∗(·, ·) is such that the following properties hold:

i) If |ui(t1)| = umax and ui(t1)u̇i(t1) > 0, then
u̇i(t1)σ∗(ui(t1), u̇i(t1)) = 0.

ii ) If |u̇i(t1)|> u̇max and|ui(t1)|< umax or if |u̇i(t1)|> u̇max

and |ui(t1)| = umax and ui(t1)u̇i(t1) ≤ 0, then
u̇i(t1)σ∗(ui(t1), u̇i(t1)) = u̇maxsgn(u̇i(t1)), where
sgnu̇i , |u̇i |/u̇i .

iii ) If no constraint is violated, then
u̇i(t1)σ∗(ui(t1), u̇i(t1)) = u̇i(t1).

Finally, we define the component decoupled diagonal
nonlinearityΣ(u, u̇) by

Σ(u(t), u̇(t)) , diag[σ∗(u1(t), u̇1(t)),σ∗(u2(t), u̇2(t)), . . .
. . . ,σ∗(um(t), u̇m(t))], t ≥ 0. (55)

Theorem 4.1. Consider the controlled nonlinear systemG
given by (1) and reference system (26). Assume there exist
gain matricesΘ∗ ∈ Rm×s and Θ∗

r ∈ Rm×m, and a function
F : Rn → Rs, such that (3) and (4) hold. Furthermore, let
K ∈ Rm×n be given by (5), whereP > 0 satisfies (6). In
addition, for a given desired reference inputrd(t), t ≥ 0, let

2007 Florida Conference on Recent Advances in Robotics, FCRAR 2007

- 6 -

Tampa, Florida, May 31 - June 1, 2007



the reference inputr(t), t ≥ 0, be given by

r(t) = H−1(s(t),Σ(u(t), u̇∗(t))u̇∗(t)), t ≥ 0, (56)

wheres(t) = (x(t),xr(t),Θr2(t),Θ2(t),e(t),eu(t)), t ≥ 0, and
u̇∗(t) , H(s(t), rd(t)), t ≥ 0. Then the adaptive feedback con-
trol law (35), with update laws (39)–(42) and reference input
r(t), t ≥ 0, provided by (56) guarantees

i) asymptotic convergence of(e(t),eu(t)), t ≥ 0, to the ori-
gin.

ii) |ui(t)| ≤ umax for all t ≥ 0 andi = 1, . . . ,m.
iii) |u̇i(t)| ≤ u̇max for all t ≥ 0 andi = 1, . . . ,m.

Proof. i) is a direct consequence of Theorem 3.1 withr(t),
t ≥ 0, given by (56). To proveii ) andiii ) note that it follows
from (50), (52), and (56) that

u̇(t) = H(s(t), ṙ(t)) = H(s(t),H−1(s(t),Σ(u(t), u̇∗(t))u̇∗(t)))
= Σ(u(t), u̇∗(t))u̇∗(t), t ≥ 0, (57)

which impliesu̇i(t) = σ∗(ui(t), u̇∗i (t))u̇
∗
i (t), i = 1, · · · ,m, t ≥

0. Hence, if the control inputui(t), t ≥ 0, with a rate of
changeu̇∗i (t), i = 1, · · · ,m, t ≥ 0, does not violate the am-
plitude and rate saturation constraints, then it follows from
(54) thatσ∗(ui(t), u̇∗i (t)) = 1 andu̇i(t) = u̇∗i (t), i = 1, · · · ,m,
t ≥ 0. Alternatively, if the pair(ui(t), u̇∗i (t)), i = 1, · · · ,m,
t ≥ 0, violates one or more of the input amplitude and/or rate
constraints, then (53), (54), and (57) imply

i) u̇i(t) = 0 for all t ≥ 0 if |ui(t)|= umax andui(t)u̇∗i (t) > 0;
and

ii ) u̇i(t) = u̇maxsgn(u̇∗i (t)) for all t ≥ 0 if |u̇∗i (t)|> u̇max and
|ui(t)|< umax or if |u̇∗i (t)|> u̇max and|ui(t)|= umax and
ui(t)u̇i(t)≤ 0;

which, for ui(0) ≤ umax, guarantee that|ui(t)| ≤ umax and
|u̇i(t)| ≤ u̇max for all t ≥ 0 andi = 1, · · · ,m.

Remark 4.1. In accordance with (24)–(25), the value of
u̇(t), t ≥ 0, used extensively in the above proceedings, can
be obtained from the value of the time derivative of the com-
pensator statexc(t), t ≥ 0, or that ofw(t), t ≥ 0, since, from
(24)–(25),u̇(t) = ẋc(t) = w(t), t ≥ 0.

Note that it follows from Theorem 4.1 that if the de-
sired reference inputrd(t), t ≥ 0, is such that the actuator
amplitude and/or rate saturation constraints are not violated,
thenr(t) = rd(t), t ≥ 0, and hencex(t), t ≥ 0, converges to
a neighborhood ofxd(t), t ≥ 0. Alternatively, if there exists
t = t∗ > 0 such that the desired reference input drives one or
more of the control inputs to the saturation boundary, then
r(t) 6= rd(t), t > t∗. However, as long as the time interval
over which the control input remains saturated is finite, the
reference signal ultimately reverts to its desired value, and

tracking properties are preserved. Of course, if there exists
a solution to the tracking problem wherein the input ampli-
tude and rate saturation constraints are not violated when the
tracking error is within certain bounds, then our approach is
guaranteed to work.

5 ILLUSTRATIVE NUMERICAL EXAMPLE
In this section we present a numerical example to

demonstrate the utility of the proposed direct adaptive con-
trol framework for adaptive stabilization in the face of ac-
tuator amplitude and rate saturation constraints. Note that a
tracking example is not provided due to lack of space, but
the presented approach is equally relevant to such problems.

Example 5.1. Consider the nonlinear dynamical system
representing a controlled rigid spacecraft given by

ẋ(t) =−I−1
b XIbx(t)+ I−1

b u(t), x(0) = x0, t ≥ 0, (58)

wherex = [x1, x2, x3]T represents the angular velocities of
the spacecraft with respect to the body-fixed frame,Ib∈R3×3

is an unknown positive-definite inertia matrix of the space-
craft, u(t) = [u1, u2, u3]T is a control vector with control in-
puts providing body-fixed torques about three mutually per-
pendicular axes defining the body-fixed frame of the space-
craft, andX denotes the skew-symmetric matrix

X ,




0 −x3 x2

x3 0 −x1

−x2 x1 0


 . (59)

Note that (58) can be written in state space form (1)
with f (x) = −I−1

b XIbx and G(x) = I−1
b . Since f (x) is

a quadratic function, we parameterizef (x) as f (x) =
Θǹ fǹ (x), where Θǹ ∈ R3×6 is an unknown matrix and
fǹ (x) = [x2

1, x2
2, x2

3, x1x2, x2x3, x3x1]T. Next, let F(x) =
[xT, f T

ǹ ]T, Br = I3, Ĝ(x) ≡ I3, K̂1 = Ib, andK̂2 = [Ar,−Θǹ ],
so that

G(x)Ĝ(x)K̂1 = I−1
b I3Ib = I3 = Br,

f (x)+BrK̂2F(x) = f (x)+ I3
[

Ar,−Θǹ
]
F(x) = Arx,

and hence (3) and (4) hold. Now, it follows from Theorem
3.1 that the adaptive feedback controller (16) guarantees
that e(t) → 0 as t → ∞ when considering input amplitude
and rate saturation constraints. Specifically, here we choose
R1 = 0.5I3, R2 = 0.1I3, and

Ar =




0 1 0
0 0 1
−8 −12−6


 .

2007 Florida Conference on Recent Advances in Robotics, FCRAR 2007

- 7 -

Tampa, Florida, May 31 - June 1, 2007



0 5 10 15 20 25
-0.5

0

0.5
x 1(t

)
Actual
Reference

Desired

0 5 10 15 20 25
 -0.5

0

0.5

x 2(t
)

0 5 10 15 20 25
 -0.5

0

0.5

x 3(t
)

Time [s]

Figure 1. Angular velocities versus time
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Figure 2. Control signals versus time

To analyze this design we assume that

Ib =




20 0 0.9
0 17 0

0.9 0 15


 , Q1 = Q2 = I3,

with initial condition x(0) = [0.4, 0.2,−0.2]T, x1(0) =
1
2x(0), u(0) = xr2(0) = [0,0,0]T. Figure 1 shows the angular
velocities versus time, with saturation constraintsumax = 1
and u̇max = 0.5. These angular velocities converge to zero.
Figure 2 shows the corresponding control inputs.

6 CONCLUSION
A direct adaptive nonlinear tracking control framework

for multivariable nonlinear uncertain systems with actuator
amplitude and rate saturation constraints was developed. By
appropriately modifying the adaptive control signal to the
reference system dynamics, the proposed approach guaran-
tees asymptotic stability of the error system dynamics in the
face of actuator amplitude and rate limitation constraints. Fi-
nally, a numerical example was presented to show the utility
of the proposed adaptive control scheme.
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