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ABSTRACT
Metrics, which facilitate the measurement of parameters
such as “distance” and “length” are used frequently in rigid
body guidance problems. Commonly used metrics have a
characteristic of being dependent on the choice of fixed or
moving reference frame and the units used. Most motion
synthesis algorithms require some notion of the “distance”
between two desired locations1. The metrics in Euclidean
space depend on the coordinate frame and units used. A
metric independent of these choices is desirable. In this
paper we present a metric which is independent of the choice
of fixed coordinate frame.
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1. INTRODUCTION
The approximate synthesis of mechanisms for rigid body
guidance can be carried out only when there is a means
to measure the distance between the moving frame of the
mechanism and the desired locations. A metric is used to
measure the distance between two points in a set. There
are various metrics for finding the distance between two
points in Euclidean space. Finding the distance between
two locations of a rigid body is still the subject of ongoing
research, see [17, 2, 8, 12, 18, 15, 7, 10, 20, 3, 6]. For
two locations of a finite rigid body either SE(2)(planar)
or SE(3)(spatial) locations the metrics being used yield
a distance which is dependant upon the chosen frame of
reference and the units used, see [2, 18]. But, a metric
independent of these choices is desirable and is referred to as
bi-invariant. Metrics independent of the choice of coordinate
frames and the units used do exist in SO(N), see Larochelle
[15]. One bi-invariant metric defined by Ravani and Roth
[19], defines the orientation between two orientations of
a rigid body as the magnitude of the difference between
the associated quaternions. The techniques used here are
based on the polar decomposition (represented by PD) of
the homogenous transform representation of the elements
of SE(N). The mapping of the elements of SE(N-1) to
SO(N) yields hyperdimensional rotations that approximate
the rigid body displacements. A conceptual representation
of the mapping of SE(N-1) to SO(N) is shown in Figure 1. In
the planar case the elements of SE(2) are mapped onto the
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1Location of a rigid body prescribes both its position and
orientation
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Figure 1: SE(N-1) to SO(N)

SO(3) as shown in Figure 2. Once the elements are mapped
to SO(N) they can then be evaluated using the bi-invariant
metrics existing in SO(N). The PD based projection metric
in SE(N-1) is left invariant.

2. FINITE SETS OF LOCATIONS
Consider the case when a finite number of n displacements
(n≥2) are given and we have to find out the magnitude
of these displacements in order to synthesize a mechanism
for rigid body guidance through the given locations. The
displacements would then depend on the coordinate frame
and the system of units chosen. In order to yield a left
invariant metric we utilize a unit point mass model for a
moving body suggested by Larochelle, [14]. This is done
to avoid complicated volume integrals over the body. The
center of mass and the principal frame are unique for the
mechanical system and invariant with respect to the choice
of the coordinate frames and the system of units. The set of
all two-dimensional rigid body displacements forms a group
generally referred to as SE(2), the special Euclidean group
in two dimensions.

The procedure for determining the center of mass −→c and the
principal axes frame (PF) associated with the n prescribed
locations is described below. A unit point mass is located
at the origin of each location as shown in Figure 3.
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Figure 2: SE(2) to SO(3)
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Figure 3: Unit Point Mass Model

−→c =
1

n

n
∑

i=1

−→
di (1)

where,
−→
di is the translation vector associated with the ith

location (i.e. the origin of the ith location with respect to
the principal frame).

In order to determine the principal frame which is defined
as the principal axes of the n point mass system with its
origin at the centroid −→c . After finding the centroid of the
mass system we determine the inertia tensor [I] associated
with the n point masses;

[I] =





Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz



 (2)

The principal moments of inertia shown above are defined
by,

Ixx = −

n
∑

i=1

(y2
i + z2

i )

Iyy = −

n
∑

i=1

(z2
i + x2

i ) (3)

Izz = −

n
∑

i=1

(x2
i + y2

i )

the products of inertia are,

Ixy = Iyx = −

n
∑

i=1

(xiyi)

Ixz = Izx = −

n
∑

i=1

(xizi) (4)

Iyz = Izy = −

n
∑

i=1

(yizi)
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and xi, yi, zi are the components of
−→
d i.

The principal frame is thus determined as,

[PF ] =

[ −→v 1
−→v 2

−→v 3
−→c

0 0 0 1

]

(5)

where, −→vi are the principal axes associated with the inertia
tensor, see Greenwood [9]. The directions of the vectors
along the principal axes (−→vi ) are chosen such that the
principal frame is a right handed system.

In the planar case the inertia tensor [I] reduces to

[I] =





Ixx Ixy 0
Iyx Iyy 0
0 0 1



 (6)

and, the principal frame for the planar case reduces to a 3
× 3 matrix as shown:

[PF ] =

[ −→v 1
−→v 2

−→c
0 0 1

]

(7)

where, −→v 1 and −→v 2 are the lines representing the principal
frame. The principal frame is independent of the orienta-
tions of the frames representing the desired locations. The
metric however depends on the orientations of the frames.

3. DETERMINATION OF THE PRINCIPAL
FRAME

A primary concern in formulating the design problem
is the dependence of representations of SE(N-1) on the
chosen coordinate frames. Any optimization procedure that
minimizes a measure of distance between the task space
and the workspace of a mechanism must necessarily depend
on the choice of coordinate frames (fixed and moving).
This means that an optimum design computed in one
coordinate frame will, in general, differ from that computed
in another frame. There are several strategies for avoiding
this situation, see for example, Chirikjian [3]. The center
of mass and the principal axes frame are unique for the
mechanical system and invariant with respect to both the
choice of fixed coordinate frames as well as the system of
units [9, 1].

The principal frame is determined by using the inertia tensor
[I]. The principal axes associated with the principal frame
are chosen in such a way as to form a right-handed frame.
In the planar case there are 4 possible orientations of the PF
as can be seen from Figure 4. The directions of the principal
frame are chosen in such a way as to align it as closely as
possible with the fixed frame. One of the ways that this may
be achieved is by computing the dot product of one of the
axes of the principal frame with the fixed frame.

The four different right handed principal frames that are
possible are given by,

−→v1 ×−→v2 = [0 0 1]T (8)
−→v2 ×−−→v1 = [0 0 1]T

−−→v1 ×−→v2 = [0 0 1]T

−−→v2 ×−→v1 = [0 0 1]T

v 1

Fixed Frame 

v 2

Figure 4: Four Possible Orientations for the PF

The angle θi formed by the four principal frames and the
fixed frame can be found by,

θ1 = cos−1(−→v1 · [1 0 0]T ) (9)

θ2 = cos−1(−→v2 · [1 0 0]T )

θ3 = cos−1(−−→v1 · [1 0 0]T )

θ4 = cos−1(−−→v2 · [1 0 0]T )

where, [1 0 0]T represents the unit vector in the positive
direction of the X axis. The direction of the principal frame
with the minimum positive value of θi is chosen.

4. COMPUTATION OF CHARACTERISTIC
LENGTH

The unit disparity between translation and rotation is
resolved by normalizing the translational terms in displace-
ments. The displacements are normalized by choosing a
characteristic length, R. Investigations on the use and
determination of characteristic lengths appear in Larochelle,
[15, 4]. The characteristic length used, based upon the
investigations reported in [7, 13], is 24L

π
, where L is the

maximum translational component in the set of displace-
ments at hand. This characteristic length is the radius of
the hypersphere that approximates the translational terms
by angular displacements that are ≤ 7.5 degrees. It was
shown in [16] that this radius yields an effective balance
between translational and rotational displacement terms for
projection metrics. The PD metric is dependent on the
choice of characteristic length. Larger characteristic length
results in an increase in the weight on the rotational terms
whereas a decrease in the characteristic length results in
increase in weight on the translational terms.

5. DUBRULLE’S ALGORITHM
A number of iterative algorithms exist for the evaluation
of the polar decomposition. Hingham described a method
based upon Newtons method, see [11]. A simple and
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Figure 5: Mapping to SO(N)

efficient iterative algorithm for the computation of the polar
decomposition is shown by Dubrulle [5]. The algorithm
produces mono-tonic convergence in the Frobenius norm
that delivers an IEEE solution in ∼ 10 or fewer steps.

%% Dubrulle's Algorithm
%% Input T : Scaled transformation
%% matrix in SE(N −1)
%% Output P : Projection in SO(N)
function P = polarmetric(T)
%Initialization
P = T;
limit = (1+eps) * sqrt(size(T,2));
T = inv(P');
g = sqrt(norm(T, 'fro' )/norm (P, 'fro' ));
P = 0.5 * (g * P+(1/g * T));
f = norm(P, 'fro' );
pf = inf;
% Iteration
while (f >limit) & (f <pf)

pf = f;
T = inv(P');
g= sqrt(norm(T, 'fro' )/f);
P = 0.5 * (g * P+(1/g * T));
f = norm(P, 'fro' );

end
return

6. DISTANCE BETWEEN ELEMENTS IN
SO(N)

The elements in SO(N) are derived from homogenous trans-
formations representing planar SE(2) or spatial SE(3) dis-
placements by polar decomposition as shown in Figure 5.
Planar and spatial displacements may then be approximated
using a 3 × 3 rotation in the planar case or a 4 × 4 rotation
in the spatial case. The elements Ti in the planar case are

given by

Ti =









[R]
−→
t

0 0 1









(10)

where, [R] is a 2 × 2 matrix representing the rotational

component and
−→
t represents the translational component

of the homogenous transformation of the planar locations.
The scaled transformation matrices are thus obtained as,

Ti(scaled) =









[R]
−→
t /R

0 0 1









(11)

where, R represents the characteristic length described in
Section 4. The scaled transformation matrices are then
projected to SO(3) by using the Dubrulle algorithm for polar
decomposition. The distance between elements in SO(3) can
be determined by using the metric suggested by Larochelle,
[14]. The distance between two elements [A1] and [A2]
in SO(N) can be defined by using the Frobenius norm as
follows,

d = ‖[I] − [A2][A1]
T ‖F (12)

7. SUMMARY OF THE TECHNIQUE
For a set of n finite locations the steps to be followed are:

1. Determine the PF of the n locations.

2. Determine the relative displacements from PF to each
of the n locations.

3. Determine the characteristic length R associated with
the n displacements with respect to the PF and scale
the translation terms in each by 1/R.

4. Compute the projections of PF and each of the scaled
relative displacements using the polar decomposition
algorithm explained in Section 5.

5. The magnitude of the displacement is defined as the
distance from PF to the scaled relative displacement
as computed via Equation 12. The distance between
any two of the n locations is similarly computed by
the application of Equation 12 to the projected scaled
relative displacements.

It is to be noted that even though the principal frame does
not depend on the orientations of the desired locations the
metric does.

8. CASE STUDY
Consider the rigid body guidance problem investigated by
Larochelle [13]. The 10 planar locations are listed in Table
1 and the origins of the coordinate frames with the respect
to the fixed reference frame (F) are shown in Figure 3.
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Table 1: 10 Rigid Body Locations
No. x y α

1 0.0 0.0 40.0
2 4.5 4.0 20.0
3 8.5 8.0 0.0
4 13.0 11.5 -30.0
5 13.0 12.5 -35.0
6 9.5 14.0 -35.0
7 5.0 13.5 -30.0
8 1.0 10.5 -15.0
9 -1.0 6.5 0.0
10 -1.5 3.0 20.0

Table 2: Distances to the Desired Locations
No. x y α d

1 0.0 0.0 40.0 1.7280
2 4.5 4.0 20.0 1.3115
3 8.5 8.0 0.0 0.8567
4 13.0 11.5 -30.0 0.1584
5 13.0 12.5 -35.0 0.1487
6 9.5 14.0 -35.0 0.0920
7 5.0 13.5 -30.0 0.1516
8 1.0 10.5 -15.0 0.5017
9 -1.0 6.5 0.0 0.8589
10 -1.5 3.0 20. 1.3134

The principal frame was determined using the methodology
detailed in section 3,

[PF ] =





0.80 0.60 5.20
−0.60 0.80 8.35

0 0 1



 (13)

and is shown in Figure 3. Consider an approximate motion
synthesis problem in which a planar four-bar is desired
to attain these locations. An algorithm to perform the
approximate motion synthesis would require a distance
metric to to enable the measurement of the distance from
the moving frame attached to the coupler, to each of the
desired locations. Here, we present an example in which the
mechanisms coupler frame is nearest the sixth location. In
Table 2 the distances from the coupler frame to each of the
10 desired locations are listed. Figure 6 shows the planar
4R chain when it is nearest the sixth location.

9. CONCLUSIONS
This paper presents a polar decomposition based distance
metric as it applies to planar locations. A method for
determination of the invariant frame for a finite set of
displacements viz: the principal frame has been developed.
The homogenous transform representations of elements
in SE(2) are then projected onto SO(3) by using polar
decomposition. The polar decomposition of elements of
SE(2) yields an element of SO(3) nearest to the given
element of SE(2). A bi-invariant metric is then utilized to
find the distance between elements in SO(3). The result is
a left invariant metric on planar displacements. This metric
is used to find the distances between rigid body locations.
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Figure 6: A Planar 4R Chain nearest the Sixth
Location
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